o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic Organic Hybrid Perovskite Solar Cells

Product Specifications

LT-S9145 p,m-Spiro-MeOTAD

CAS No. 1573202-44-4

Grade Sublimed, > 99% (HPLC)

Formula $C_{81}H_{68}N_4O_8$

Molecular Weight 1225.43 g/mole

Absorption 308, 378 nm (in CH_2CI_2)

Photoluminenscence 414 nm (in CH₂Cl₂)

Reference : J. Am. Chem. Soc. 2014, 136, 7837-7840

LT-S9146 p,o-Spiro-MeOTAD

CAS No. 1628961-22-7

Grade Sublimed, > 99% (HPLC)

Formula $C_{81}H_{68}N_4O_8$ Molecular Weight 1225.43 g/mole

Absorption 316, 375 nm (in CH_2Cl_2)

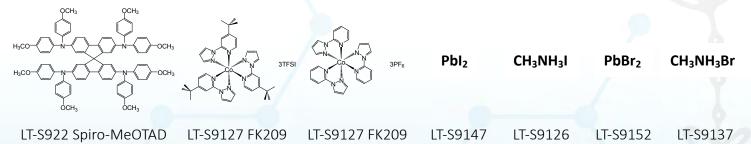
Photoluminenscence 418 nm (in CH₂Cl₂)

Reference: J. Am. Chem. Soc. 2014, 136, 7837-7840

$$H_3CO$$
 N
 OCH_3H_3CO
 N
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3

Features

- The spiro-OMeTAD derivative was employed as hole-transporting materials(HTMs), and its performance was compared for the fabrication of mesoporous TiO2/CH₃NH₃PbI₃/HTM/Au solar cell.
- po-Spiro-OMeTAD showed highly improved performance by exhibiting a short-circuit current density
 of 21.2 mA/cm², an open-circuit voltage of 1.02 V, and a fill factor of 77.6% under 1 sun illumination
 (100mW/cm²), which resulted in an overall PCE of 16.7%, compared to ~15% for conventional p-OMe
 substituent(LT-S922).



Device Application

Best Perovskite Solar Cell:

 $\mathsf{FTO/TiO2(250\;nm)/CH_3NH_3I:Pbl_2\;(350\;nm)/HTMs(70\;nm)/Au}$

Related products from Lumtec :

