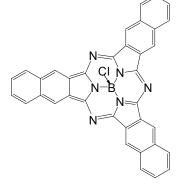


Lumtec Luminescence Technology Corp.

Chloroboron (III) Subnaphthalocyanine as an Electron Donor in Bulkheterojunction Photovoltaic Cells

Product Specifications


SubNC LT-S947

CAS No. 142710-56-3 **Formula** C₃₆H₁₈BClN₆

Grade Sublimed product **Molecular Weight** 580.83 g/mole Absorption 658 nm (in CH₂Cl₂)

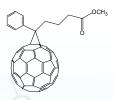
> 370 °C (0.5% weight loss) **TGA**

Reference: Nanotechnology 24 (2013) 484007

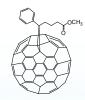
Features

- SubNC was used as an electron donor, combined with a [6,6]-phenyl-C₇₁-butyric acid methyl ester (PC₇₁BM) or fullerene C₇₀ acceptor in bulk heterojunction photovoltaic cells.
- In spite of the limited solubility of SubNC in organic solvents, the solution processed device exhibited an efficiency of 4.0% under 1 sun, AM1.5G solar irradiation at room temperature, and 5.0% at 80°C due to the temperature-dependence of the carrier mobilities.
- SubNC:C₇₀ bulk heterojunctions were also fabricated via thermal co-evaporation, demonstrating an efficiency of 4.4%.
- The result shows that SubNC is a promising material for photovoltaic applications via various processing techniques, such as vacuum deposition and wet coating.

Device Application


Spin-Coating OPV Device:

ITO/MoO₃(5 nm)/SubNC:PC₇₀BM(1:5, 75 nm)/BCP(6 nm)/Al


Vacuum Deposition OPV Device:

ITO/MoO₃(5 nm)/SubNC:C₇₀(1:5, 75 nm)/BCP(6 nm)/Al

Related products from Lumtec:

LT-S967 C₇₀

LT-S923 PC₇₁BM

LT-E304 BCP

MoO₃

LT-E003 MoO₃

LT-S943 SubPC