

Novel Interfacial Materials for Organic Photovoltaic Cells (OSCs)

Product Specifications

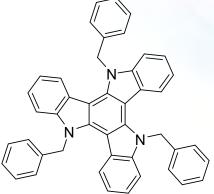
LT-S9084 TBDI

Formula $C_{45}H_{33}N_3$

Molecular Weight 615.76 g/mole

 Tm
 333 °C

 Absorption
 317nm


 Emission
 394nm

 HOMO (eV)
 -5.25 eV

 LUMO (eV)
 -1.98 eV

Hole mobility 5.95x10⁻³ cm² V¹ s⁻¹ (at 0.3MV cm⁻² electric field)

Reference : J. Mater. Chem. A, 2013, 1, 4077-4082

● Fe

Features

- TBDI have good transparency in the visible spectrum, high hole mobility, and compatible highest occupied molecular orbital (HOMO) values with the donor material, which make them excellent hole-extraction layers (HELs) for OSCs.
- TBDI possess a high mobility of 5.95×10^{-3} cm² V¹ s⁻¹ at 0.3 MV cm⁻² electric field, which is higher than that of NPB (2.70×10^{-4} cm² V¹ s⁻¹).
- The (SubPc,SubNc)/C₆₀ OSCs with a TBDI as HEL show *Voc* of 1.13/0.84 V, *Jsc* of 5.69/7.95 mAcm⁻², an FF of 55.22/62.50% and PCE of 3.56/4.17%.
- The SubPc/ C_{60} and SubNc/ C_{60} OSCs with a TBDI as HEL show impressive 35.9% and 29.1% improvements in power conversion efficiencies compared to reference devices.

Device Application

ITO/TBDI(6 nm)/SubPc(8.5 nm)/C60(31.5 nm)/BCP(8.0 nm)/Al(100 nm) ITO/TBDI(5 nm)/SubNc(6 nm)/C60(33.5 nm)/BCP(8.0 nm)/Al(100 nm) Related products from Lumtec:

LT-S903 C₆₀

LT-S943 SubPc

LT-S947 SubNc

LT-E304 BCP