m-Indolocarbazole Derivative as a Universal Host Material for RGB and White Phosphorescent OLEDs

Product Specifications

LT-N4113 4ICDPy Indolo[3,2-a]carbazole,5,12-dihydro-6,7-dimethyl-5,12-di-4-pyridinyl
CAS No.
Grade
Formula
Molecular Weight
Photoluminescence HOMO/LUMO
Tg
1803246-66-3
Sublimed, >99 \% (HPLC)
$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{4}$
$438.52 \mathrm{~g} / \mathrm{mole}$
430 nm (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
$-5.47 \mathrm{eV} /-2.17 \mathrm{eV}$
$114{ }^{\circ} \mathrm{C}$

Reference : Adv. Funct. Mater. 2015

Features

- This material of 4-pyridyl group renders good thermal stability, homogeneous morphology, and balanced carrier transporting ability without significantly lowering their triplet energy level.
- The two-color, single-host white device using 4ICDPy as the host exhibits superior EL performance and color stability with EQE of 20.3% and PE of $50.9 \mathrm{Im} \mathrm{W}^{-1}$.
- The device with 4ICDPy shows low turn-on voltage and low efficiency roll-off at high luminance. This finding is an effective approach to design the universal host material for highly efficient RGB PhOLEDs and WOLEDs.

Device Application

The White Device:

ITO/ NPB (10 nm)/ TAPC (20 nm)/ 4ICDPy: 10\% FIrpic: $0.2 \% \operatorname{lr}($ piq $) 3(30 \mathrm{~nm}) /$ TPBi $(50 \mathrm{~nm}) / \mathrm{LiF}(1 \mathrm{~nm}) / \mathrm{Al}(100 \mathrm{~nm})$.
The Blue, green and red Devices:
ITO/ TAPC (50 nm)/ ICDP (10 nm)/ Host: FIrPic ($8 \%, 30 \mathrm{~nm}$)/ 3TPYMB (5 nm)/ BCP (40 nm)/ LiF (1 nm)/ AI (100 nm).
ITO/ NPB (10 nm)/ TAPC (20nm)/ Host: fac-Ir(ppy)3 $(6 \%, 25 \mathrm{~nm}) /$ TPBi $(60 \mathrm{~nm}) / \mathrm{LiF}(1 \mathrm{~nm}) / \mathrm{Al}(100 \mathrm{~nm})$.

Related products from Lumtec

LT- N137 TAPC

LT-E607 FIrPic

LT-N856 3TPYMB

LT-E304 BCP

LT-E504 fac- Ir(ppy) ${ }_{3}$

