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Proteomic analysis distinguishes 
extracellular vesicles produced 
by cancerous versus healthy 
pancreatic organoids
Abigail C. Buenafe1*, Craig Dorrell2, Ashok P. Reddy3, John Klimek3 & Daniel L. Marks1,4,5

Extracellular vesicles (EVs) are produced and released by both healthy and malignant cells and bear 
markers indicative of ongoing biological processes. In the present study we utilized high resolution 
flow cytometry to detect EVs in the plasma of patients with pancreatic ductal adenocarcinoma 
(PDAC) and in the supernatants of PDAC and healthy control (HC) pancreatic organoid cultures. 
Using ultrafiltration and size exclusion chromatography, PDAC and HC pancreatic organoid EVs were 
isolated for mass spectrometry analysis. Proteomic and functional protein network analysis showed 
a striking distinction in that EV proteins profiled in pancreatic cancer organoids were involved in 
vesicular transport and tumorigenesis while EV proteins in healthy organoids were involved in cellular 
homeostasis. Thus, the most abundant proteins identified in either case represented non-overlapping 
cellular programs. Tumor-promoting candidates LAMA5, SDCBP and TENA were consistently 
upregulated in PDAC EVs. Validation of specific markers for PDAC EVs versus healthy pancreatic EVs 
will provide the biomarkers and enhanced sensitivity necessary to monitor early disease or disease 
progression, with or without treatment. Moreover, disease-associated changes in EV protein profiles 
provide an opportunity to investigate alterations in cellular programming with disease progression.

Abbreviations
EV  Extracellular vesicles
MVB  Multivesicular body
PPP  Platelet-poor plasma
PDAC  Pancreatic ductal adenocarcinoma
HC  Healthy control
HRFC  High resolution flow cytometry
SEC  Size exclusion chromatography
PE  Phycoerythrin
APC  Allophycocyanin
AF647  Alexa Fluor 647

Extracellular vesicles (EVs) recently received wide attention as mediators of intercellular communication and 
regulators of diverse biological  processes1,2. Analyzed EVs include both exosomes, which are 30–150 nm diam-
eter vesicles generated as endosomal-derived multivesicular bodies (MVB), and 100 to > 500 nm microvesicles 
derived from the plasma membrane. Both vesicle types are known to carry functional biomolecules including 
protein, nucleic acid and lipid as cargo. Significantly, EVs are functionally involved in many cancer-supportive 
 processes3. As reviewed elsewhere, EVs have been found to play a role in promoting tumor growth by condition-
ing of the primary as well as secondary tumor  sites4–6, by mediating immune  suppression7,8 and by mediating 
mechanisms of drug  resistance9–12.

In pancreatic cancer studies, EVs are being investigated for functional roles in communication within the 
tumor microenvironment and in  metastasis13,14. Due to the fact that overt symptoms arise only at later stages of 
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the disease, a diagnosis of pancreatic cancer is typically associated with a devastating prognosis. Thus, efforts to 
detect pancreatic cancer markers at earlier disease stages now include the investigation of EVs not only produced 
by the tumor cells  themselves15, but also by the cellular microenvironment influenced by the  tumor16–19. Thus 
far, the identification of early disease EV-associated cancer biomarkers is limited, perhaps due to the fact that 
most markers are expressed to some extent by non-cancerous cells and the protocols used to isolate and identify 
disease-relevant EVs are still being  developed20. EV-associated pancreatic cancer biomarkers currently being 
studied for diagnostic purposes include surface markers such as  GPC121,22 and  ANXA617, as well as EV cargo 
such as mutant  KRAS+  DNA23,24 and  miRNA25–27. Screening with a panel of EV biomarkers would significantly 
improve the sensitivity and specificity of detecting pancreatic cancer at an early  stage28.

With the multitude of diverse roles ascribed to EVs, it is important to recognize that there remain significant 
challenges to the isolation and characterization of defined EV  populations29. Analysis of any biofluid sample 
will present a host of non-EV particles in the same nano-size range, such as lipoproteins and protein aggregates, 
much of which will co-purify with  EVs30–32. An additional challenge with EV-containing biofluids is that most 
isolation and characterization methods rely on bulk measurements of a heterogeneous EV  population33. This 
becomes a major issue when disease relevant EVs are largely diluted by the majority of normal EVs present, 
with the chance of detection earlier in disease thereby being greatly diminished. The International Society for 
Extracellular Vesicles (ISEV) put forth  guidelines34–36 for the conductance and reporting of EV research to provide 
increased validation and comparable results between different research studies. The concepts presented in those 
guides are supported in the work reported here.

Three-dimensional organoid cultures are derived from primary tissues, are capable of self-renewal and retain 
functional and genetic characteristics of the original tissue. Organoids have been established from both normal 
and cancerous tissue, including pancreatic  cancer37, providing a powerful tool for the analyses of patient-derived 
samples. In this current study, we utilized a combination of ultrafiltration and size exclusion chromatography 
(SEC) to characterize the proteomic profiles of EVs isolated from pancreatic ductal adenocarcinoma (PDAC) 
and healthy control (HC) pancreatic organoid cultures. Altogether our results present a rational method for the 
identification of EV protein biomarkers of pancreatic cancer. The ability to multiplex tissue-specific EV biomark-
ers together with validated cancer-associated EV biomarkers should lead to an enhanced screening method 
utilizing EV biomarker profiles specific for pancreatic or other types of cancers.

Methods
Antibodies and reagents. Mouse monoclonal antibodies to human surface markers were obtained from 
BD Biosciences (BD Biosciences, San Jose, CA, USA): CD9-PE (555372), CD45-PE (555483), CD63-AF647 
(561983), CD41a-APC-H7 (561422). CD45-APC (304012) was obtained from BioLegend (San Diego, CA, USA). 
Tspan8-AF647 (FAB4734R) was obtained from R&D Systems (Minneapolis, MN, USA). CD81-PE (A15781) 
antibody was obtained from ThermoFisher/Invitrogen. Megamix beads were a gift from BD Biosciences and are 
available from BioCytex/Stago (Marseille, France). Fluoresbrite YG Microsphere beads (fl-200 nm beads) were 
obtained from Polysciences Inc. (Warrington, PA, USA).

Processing of plasma samples. Human plasma samples were obtained through the Brenden-Colson 
Center for Pancreatic Care (BCCPC) in accordance with regulations approved by the Institutional Review Board 
at Oregon Health and Science University (Oregon Pancreas Tissue Registry, protocol #3609). Experimental pro-
cedures were approved and performed in accordance with all regulations. Informed consent was obtained from 
all subjects. A detailed summary of patient plasma samples used for EV analysis is provided in Supplementary 
Table S1. Blood samples were collected into vacutainer tubes containing EDTA to prevent coagulation and all 
samples were processed within two hours of the draw. Samples were centrifuged twice at 2500×g for 15 min at 
room temperature to obtain platelet-poor plasma (PPP) and supernatant was transferred into clean tubes after 
each spin, taking care to avoid contamination from the blood cell pellet. PPP was then aliquoted and stored at 
− 80 °C. Samples were thawed only once before analysis. Unless specified otherwise, all plasma samples in this 
study were stained and analyzed by flow cytometry within one week of processing.

As an additional control, EV marker stability over time in storage was evaluated. On the day of collection, 
samples were processed, then aliquoted and stored at − 80 °C until analysis. Plasma samples were thawed only 
once and analyzed for CD9 at two different timepoints separated by a period of eight to eleven weeks. As shown 
in Supplemental Fig. S1, a lower frequency of CD9+ events was detected at the second time point, with the 
percent decrease varying between samples. Additional investigation is needed to determine what contributes to 
EV marker instability during storage or why some samples are more susceptible than others. Whether this is an 
issue related to a particular processing or storage step remains to be determined. While EV markers may still be 
detectable months or perhaps even years after sample collection, any quantitative or comparative measurement 
of EV marker levels should be performed as soon as possible after sample collection.

Pancreatic organoid cultures. Tissue source and cell isolation: human PDAC tumor specimens were 
obtained in accordance with protocol #3609 approved by the Institutional Review Board at Oregon Health and 
Science University. Experimental procedures were approved and performed in accordance with all regulations. 
A detailed summary of patient pancreatic tumor samples used to generate organoid cultures for EV analysis is 
provided in Supplementary Table S2. Normal healthy pancreatic organoids were established in an identical man-
ner from islet preparations obtained through the Integrated Islet Distribution Program (https:// iidp. coh. org). 
Cells were obtained by sequential digestion with collagenase and  trypsin38; a portion of these cells was used to 
initiate organoid cultures and the remainder were cryopreserved for future culture and analysis.

https://iidp.coh.org
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Organoid culture: Pancreatic organoids were initiated, cultured and cryopreserved as described  previously39 
with human growth factors used instead of mouse factors in the liquid media. Supplementary Table S3 provides 
a list of all media components used in the generation of human pancreatic organoids. A total of  105 cells were 
embedded per 50 µl Matrigel droplet in a 24-well plate, with 500 µl of defined media added once the droplets had 
hardened. Cultures were maintained with biweekly media changes until the droplet was packed with organoids, 
after which the droplet and organoids were dispersed to fragments by trypsinization and re-embedded in a new 
Matrigel droplet. For harvest of EVs, cryopreserved patient-specific organoids from passage 8–12 were thawed 
and cultured starting with four multiple 50 µl droplets. Supernatant was collected and replaced with fresh media 
every 2 days and stored at − 80 °C after sequential centrifugation at 300×g for 10 min and at 2000×g for 10 min, 
both at room temperature, to clarify supernatants. Media replacement and culture passage was continued until 
20–30 ml of frozen supernatant was accumulated for further processing. One culture passage, in which each 
droplet was trypsinized and re-embedded in two daughter droplets, was required to prevent organoid overgrowth. 
Media was discarded and replaced 48 h after this passage—to minimize any passage-related changes in EV char-
acteristics—then collection was resumed. Phase contrast images of live organoid cultures were photographed 
using an EVOS XL microscope (Echo Inc., San Diego, CA).

Staining and analysis of EV samples by flow cytometry. Flow cytometry analysis of plasma and 
culture supernatants was performed on a Becton–Dickinson FACSCanto II (BD, San Jose, CA) modified with 
a variable output blue (488-nm) laser. All measurements reported here were performed using the 200 mW set-
ting. Voltage settings for forward scatter and side scatter were set at 475 and 450, respectively. A 0.1 µm filter was 
installed to reduce background counts contributed by the sheath fluid (1 × PBS). Any dilution of samples pre- or 
post-staining was made using 0.1 µm-filtered PBS. The threshold on the FACSCanto II was set at 300 using the 
side scatter parameter, and side scatter was plotted against fluorescence for EV marker detection. Gates were set 
to count fluorescent positive particles within an established size range (< 300 nm) excluding any antibody debris. 
Other relevant specifications for this FACSCanto II included: Nozzle size (180 µm), sheath pressure (4.3 psi), 
high flow rate (120 µl/min), low flow rate (10 µl/min). Details for flow cytometry procedure, instrument set-
tings, and reagents are organized in Supplementary Tables S4–S6 according to the Minimal Information for Flow 
Cytometry of EV-specific reporting (MIFlowCyt-EV)  framework40.

Staining of plasma EV samples: 10 µl of PPP sample was incubated with 1 µl of labeled monoclonal antibody at 
the predetermined optimal concentration for 2 h at room temperature. After the staining period, 10 µl of freshly 
diluted fl-200 nm bead solution was added to the stained EVs, and samples were diluted into 0.1 µm-filtered 
PBS for flow analysis. Dilution varied by sample and was adjusted such that less than 10K events/s would be col-
lected at the lowest flow rate to prevent coincident  detection41,42. At this event rate, the abort rate was < 10% and 
further dilution confirmed that the event rate decreased proportionally. Collection of event data was started after 
30 s of run time to ensure equilibration of sample flow rate. The stopping gate was set such that events were col-
lected until the 200 nm bead count was equal to 1000 in the 488-1 channel. Replicates were set up and stained as 
independent samples in separate tubes. To verify the presence of antibody-stained vesicles, samples were treated 
with 0.1% Triton X-100 and then flow analyzed again to verify the loss of signal due to vesicle  disruption41,43. 
Enumeration of nanoparticles within the range analyzed (< 300 nm relative to bead size) and of fluorescently 
labeled EVs was performed using FlowJo analysis software version 10.1r7 (FlowJo LLC, Ashland, OR, USA).

Staining of culture supernatants or column fractions: 10 µl of clarified supernatant or SEC column fraction 
(see EV isolation below) was incubated with 1 µl of labeled monoclonal antibody for 2 h at room temperature. 
SEC fractions were stained with a suitable tetraspanin marker as determined from previously screened super-
natants. Stained samples were diluted 25-fold and events were collected for 3 min under medium flow rate.

EV isolation procedures. 100 µl of PPP was applied to a qEV mini SEC column (Izon Science, Medford, 
MA, USA) and fractions collected according to manufacturer’s recommendation. Briefly, upon sample appli-
cation, 1 ml void volume was collected followed by 5 fractions of 200 µl each. All fractions were assessed for 
EV binding of labeled antibody by flow cytometry as described above, and for protein measurement of OD at 
280 nm on a Nanodrop 2000 (ThermoFisher Scientific). EV size distribution and concentration were assessed by 
Tunable Resistive Pulse Sensing using a qNano Gold instrument.

For the isolation of EVs prior to mass spectrometry analysis, organoid culture supernatant was collected and 
screened for EV production by flow cytometry. Supernatants were pre-filtered through 0.8 µm Whatman cel-
lulose acetate disc filters (GE Life Sciences, Marlborough, MA, USA) and then concentrated in Amicon-15 CA 
filters (100KDa MWCO, Millipore Sigma, Burlington, MA, USA) at 2000×g for 15 min per spin until samples 
were reduced to < 2 ml. Samples were then washed for 3 additional spins with 0.1 µm-filtered PBS. 500 µl of 
concentrated sample was applied to a qEV original SEC column (Izon Science, Medford, MA, USA) and frac-
tions collected according to manufacturer’s recommendation. The first 3 ml were collected as the void volume 
followed by the collection of at least six fractions at 0.5 ml each. Void volume and fractions were assessed for EV 
detection by flow cytometry and by Nanodrop measurement of OD at 280 nm.

Transmission electron microscopy of EVs. 5  µl of SEC-isolated EVs were deposited onto glow dis-
charged (120 s 15 mAmp, negative mode) carbon formvar 400 Mesh copper grids (Ted Pella 01822-F) for 3 min, 
rinsed for 15 s in water, wicked on Whatman filter paper 1, stained for 3 min in freshly prepared 1% (w/v) uranyl 
acetate in water, wicked and air dried. Samples were imaged at 120 kV on a FEI Tecnai™ Spirit TEM system. 
Images were acquired as 2048 × 2048 pixel, 16-bit gray scale files using the FEI’s TEM Imaging and Analysis 
(TIA) interface on an Eagle™ 2K CCD multiscan camera. Nanoparticle density assessed by flow cytometry in the 
EV fractions after size exclusion chromatography ranged from 2.4 to 3.6 ×  105 events/µl.
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Mass spectrometry. Sample preparation. Pancreatic organoid EV samples were pooled from fractions 
1 and 2 after SEC isolation then dried in a speedvac. Samples were digested using PreOmics iST-NHS Kit 12 × 
(Product# PO00026) following the manufacturer’s instructions. Following digestion, all samples were taken to 
dryness by vacuum centrifugation, dissolved in 50 µl each of HPLC water and peptide concentrations deter-
mined using the Pierce Quantitative Colorimetric Peptide Assay Kit (Thermo Scientific). Total peptide recovery 
for EV samples in the 4 × 4 study was as follows: PDAC-1 (3.9 µg), PDAC-2 (6.3 µg), PDAC-3 (5.7 µg), PDAC-4 
(4.3 µg), HC-1 (3.8 µg), HC-2 (1.5 µg), HC-3 (4.4 µg), HC-4 (3.5 µg). Samples PDAC-5 through PDAC-10 were 
processed separately and total peptide yields ranged from 5 to 20 µg.

LC–MS/MS. Sample digests (~ 4  µg, with the exception of HC-2) were loaded onto an Acclaim PepMap 
0.1 × 20 mm NanoViper C18 peptide trap (Thermo Scientific) for 5 min at a 10 μl/min flow rate in a 2% ace-
tonitrile, 0.1% formic acid mobile phase and peptides separated using a PepMap RSLC C18, 2  μm particle, 
75 μm × 50 cm EasySpray column (Thermo Scientific) using a 7.5–30% acetonitrile gradient over 200 min in 
mobile phase containing 0.1% formic acid and a 300 nl/min flow rate using a Dionex NCS-3500RS UltiMate 
RSLC nano UPLC system. Tandem mass spectrometry data was collected using an Orbitrap Fusion mass spec-
trometer configured with an EasySpray NanoSource (Thermo Scientific). Instrument was configured for data 
dependent analysis (DDA) using the MS/DD-MS/MS setup. Full MS resolutions were set to 60,000 at m/z 200 
and full MS AGC target was 3E6 with an IT of 50 ms. Mass range was set at 370–1400. AGC target value for frag-
ment spectra was set at 1E5, and intensity threshold was kept at 2E5. Isolation width was set at 1.2 m/z. A fixed 
first mass of 100 m/z was used. Normalized collision energy was set at 28%. Peptide match was set to off, and 
isotope exclusion was on. All data were acquired in profile mode using positive polarity.

Data analysis. Comet (v. 2016.01, rev. 2)44 was used to search MS2 Spectra against an April 2020 version of 
a uniprot FASTA protein database containing canonical Homo sapiens sequences, concatenated sequence-
reversed entries to estimate error thresholds and 179 common contaminant sequences and their reversed forms. 
The database processing was performed with python scripts available at https:// github. com/ pwilm art/ fasta_ utili 
ties. git and Comet results processing used the PAW  pipeline45 from https:// github. com/ pwilm art/ PAW_ pipel 
ine. git. Comet searches for all samples were performed with trypsin enzyme specificity. Monoisotopic parent 
ion mass tolerance was 1.25 Da. Monoisotopic fragment ion mass tolerance was 1.0005 Da. A static modifica-
tion of + 113.084 Da was added to all cysteine residues and a variable modification of + 15.9949 Da to methio-
nine residues. We used a linear discriminant transformation to improve the identification sensitivity from the 
Comet  analysis45,46. Comet scores combined into linear discriminant function scores, and discriminant score 
histograms created separately for each peptide charge state (2+, 3+, and 4+). Separate histograms were created 
for matches to forward sequences and for matches to reversed sequences for all peptides of 7 amino acids or 
longer. The score histograms for reversed matches were used to estimate peptide false discovery rates (FDR) 
and set score thresholds for each peptide class. For the 4 × 4 study, a total of 781 proteins were identified across 
all 8 samples (4 PDAC and 4 HC) after removing contaminants (e.g., keratin, trypsin) and reversed entries. The 
total number of proteins identified for each sample is as follows: PDAC-1 (548), PDAC-2 (534), PDAC-3 (507), 
PDAC-4 (595), HC-1 (573), HC-2 (510), HC-3 (556), HC-4 (576). Differential protein abundance between 
groups was determined by comparing the spectral counts of identified proteins between experimental groups 
using the Bioconductor package  edgeR47. Comparisons between groups were performed using Fisher’s exact 
test, and a Benjamini–Hochberg multiple testing correction used to limit the candidate false discovery rate. The 
mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the  PRIDE48 
partner repository with the dataset identifier PXD030325.

Ethics approval and consent to participate. All PDAC samples, including blood and tumor tissue, 
were collected in accordance with regulations approved by the Institutional Review Board at Oregon Health and 
Science University (Oregon Pancreas Tissue Registry, protocol #3609). Experimental procedures were approved 
and performed in accordance with all regulations. Informed consent was obtained from all subjects.

Results
Detection of EV surface markers in human PDAC plasma by flow cytometry. The ability to 
detect EVs in platelet-poor plasma (PPP) samples from pancreatic cancer patients was investigated. Two types 
of reference beads were used to ensure instrument consistency and reliability in the detection of EV surface 
markers by flow cytometry. Megamix fluorescent polystyrene beads, detectable in the 488-1 channel, were used 
to establish a reference size range on the FACSCanto II cytometer (Fig. 1A). Because the refractive and reflective 
properties of beads are different from that of  EVs49,50, reference beads were not used to determine absolute size 
of the EV population, but rather as a relative reference to establish consistency in the detected size range over the 
course of this study. For all experiments described here, the same FACSCanto II settings were used. A second 
reference bead, Fluoresbrite 200 nm beads (fl-200 nm) also detected in the 488-1 channel, was added to each 
PPP sample prior to analysis to normalize for dilution. Figure 1A shows an example of fl-200 nm beads added 
to PBS in comparison to a PPP sample. Note the increased nanoparticle density (long box adjacent to fl-200 nm 
bead box) along the side scatter (SSC) axis in the PPP sample.

For monoclonal antibody (mAb) staining of plasma EV markers, two routinely used EV markers were cho-
sen: CD9 is one of several tetraspanin molecules commonly associated with EVs and CD45 is present on EVs 
generated by multiple hematopoietic cell types. Figure 1B shows the density plots corresponding to the gating 
of  CD9+ or  CD45+ EVs in a human PPP sample at optimized mAb staining conditions. Also shown in Fig. 1B, 
treatment with 0.1% Triton X-100 reduced detection of plasma EVs to background levels, verifying that mAb 

https://github.com/pwilmart/fasta_utilities.git
https://github.com/pwilmart/fasta_utilities.git
https://github.com/pwilmart/PAW_pipeline.git
https://github.com/pwilmart/PAW_pipeline.git
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staining was indeed detecting surface markers on vesicles. The detection of  CD9+ EVs in plasma was further 
validated by performing size exclusion chromatography (SEC) on plasma samples. SEC fractions were collected 
after passage over a qEV mini column, and the fractions analyzed by flow cytometry for  CD9+ EVs. As a general 

Figure 1.  Flow cytometry detection of EVs in PDAC patient plasma. (A) Megamix beads (left panel, 100–
500 nm in size) were detected with 488 nm fluorescence and were used to standardize the flow cytometer for 
acquisition of labeled EVs. Additional panels compare acquisition of PBS alone or PBS with 200 nm Fluoresbrite 
beads (fl-200 nm) or platelet-poor plasma (PPP) with fl-200 nm beads. (B) Detection of CD9 and CD45 
antibody staining of plasma EVs is reduced to background by the addition of 0.1% Triton X-100. (C) CD9, 
CD45 or CD41 positive EVs were assessed in PPP samples from PDAC patients receiving neoadjuvant treatment 
for 0 to 4 cycles.
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measure of protein contamination, the absorbance at 280 nm was also measured in the same fraction. As shown 
in Supplemental Fig. S2,  CD9+ EVs were detected in the expected SEC fractions (fractions #1–3) while proteins 
detectable by A280 increasingly appeared in later fractions. As further controls on flow cytometry staining of 
EVs, we demonstrated successful multiparameter staining by co-staining with CD45-specific antibodies in two 
different channels (Supplemental Fig. S3).

Plasma samples from PDAC patients were surveyed for the detection of EVs using the conditions established 
above. PDAC samples were grouped according to neoadjuvant chemotherapy treatment duration comparing 
plasma from patients without treatment to that of patients with increasing cycles of treatment. As seen in Fig. 1C 
and Supplementary Table S1, CD9 and CD45 EVs were detected in all plasma samples and levels were variable, 
but CD9 EV levels decreased significantly with more treatment. Average CD9 EV levels detected in PPP samples 
from untreated patients (6129 ± 1996 EVs/10 µl) were significantly higher than CD9 EV levels in PPP samples 
after 3–4 cycles of neoadjuvant therapy (2908 ± 978, p = 0.02). While we demonstrate here that EVs were readily 
detectable in plasma from PDAC patients, interpretation of these results was more difficult. Since many cell types 
are known to express CD9, it was not possible to establish the source of these plasma EVs or their relationship 
to disease. Discovery of disease relevant EV markers coupled with tissue-specific EV markers would be of tre-
mendous benefit for diagnosis and treatment evaluation. The platelet marker CD41a was included as a negative 
control as well as to indicate that samples were handled and processed properly (platelet-poor plasma = low 
CD41 expression).

Analysis of EVs produced by PDAC and healthy control pancreatic organoids. Biological fluids, 
particularly plasma samples, are inherently complex and present a significant challenge for the isolation and 
characterization of EVs. In addition, many cell types produce EVs, complicating the interpretation of changes in 
marker levels and source identification. Recent success in the generation and maintenance of organoid cultures 
provided an opportunity to determine if EVs could be detected in the culture supernatants of pancreatic orga-
noids and enable discovery of more defined PDAC-associated markers.

PDAC and normal pancreatic organoid supernatants were first evaluated for the detection of EVs bearing 
tetraspanin markers by flow cytometry. Supplemental Fig. S4 shows that EVs positive for tetraspanin markers 
were detected in pancreatic organoid supernatants and that treatment with Triton X-100 reduced tetraspanin-
positive EV detection to background levels. PDAC and healthy control (HC) organoid EVs were screened for 
CD9, CD63, CD81 and Tspan8 tetraspanin expression and found to be highly variable except for CD81 which 
showed little to no detection (Supplemental Fig. S5). Heterogeneous presence of tetraspanins was also recently 
observed in an analysis of exosomes from 14 cell lines of different  origins51. Interestingly, Tspan8, which we 
readily detected in both PDAC and HC organoid supernatant EVs, was reported to promote selective uptake 
into endothelial and pancreatic cells when complexed with integrin α452. CD41a was used as a negative control 
and was not detected in the supernatant of pancreatic organoids.

The use of defined culture media to establish pancreatic organoids (pictured in Fig. 2A) without the presence 
of serum provided an opportunity to isolate organoid EVs with sufficient purity to provide consistent results 
by mass spectrometry. Early isolation attempts found that, even with the use of defined media components, 
bovine serum albumin included in the N2 media supplement presented as a major contaminant in the analysis. 
Subsequently, a final combination of isolation techniques involving low speed clarification, ultrafiltration and 
size exclusion chromatography (Fig. 2B) was found to be essential for consistent proteomic analysis without 
detection of major contaminants. With the adoption of this isolation strategy, proteomic analysis showed that 
our sample results consistently included many of the top 100 EV proteins reported in the Vesiclepedia database 
(http:// micro vesic les. org) and indicates a good enrichment of EV proteins. EM images in Fig. 2C show a sampling 
of EVs isolated from HC and PDAC pancreatic organoids. Small aggregates of EVs were often observed, which 
is common at low levels of serum or soluble protein.

Mass spectrometry of EVs produced by PDAC and healthy control pancreatic organoids. An 
experiment was set up for comparative proteomic analysis of supernatant EVs isolated from 4 individual PDAC 
organoid cultures versus 4 HC pancreatic organoid cultures (4 × 4 study). Supernatant EVs were isolated and 
processed in an identical manner, then equivalent amounts of sample were analyzed in parallel by mass spec-
trometry (see “Methods”). Protein candidates for differential expression were analyzed for significant change 
between the HC and PDAC sample sets. A multidimensional scaling (MDS) plot of the normalized data (Fig. 3A) 
showed clustering of the samples by condition, indicating good separation of HC and PDAC samples. Figure 3B 
shows the data distribution of HC over PDAC candidates with fold-change plotted against CPM, where UP regu-
lated proteins are more highly expressed in HC EVs and DOWN regulated proteins are more highly expressed 
in PDAC EVs. Fifty-one candidates were identified as being up or down regulated at a < 5% false discovery rate 
(FDR, p-value < 0.05) while approximately 320 proteins showed no significant change (non-DE).

Figure 4A lists the top ten proteins identified with the greatest positive fold change, representing proteins 
differentially upregulated in HC EVs (top panel). Conversely, also listed are the ten proteins with the greatest 
negative fold change, representing proteins differentially upregulated in PDAC EVs (bottom panel). The results 
for these individual samples instead of group averages are provided in Supplementary Table S7. Interestingly, 
protein fold changes observed for the top ten proteins in HC EVs were considerably higher compared to the top 
ten proteins in PDAC EVs. Proteins in the HC group were at levels 10- to 90-fold greater than in the PDAC group, 
while this magnitude of difference was not observed with upregulated proteins in the PDAC group.

Average spectral count for each of these proteins is shown in Fig. 4B. In choosing a screening marker for 
the detection of EVs in plasma for example, the presence of more abundant EV proteins would much improve 
the signal to noise ratio. Thus, a more detectable signal as well as greater fold difference between PDAC versus 

http://microvesicles.org


7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3556  | https://doi.org/10.1038/s41598-022-07451-6

www.nature.com/scientificreports/

healthy samples is desirable in choosing candidate screening markers. Based on these criteria, the 2 best marker 
candidates in the top 10 list of the HC group are DUOX2 and AMPN. MUC3A and CLCA4 are also reasonable 
candidates although abundance levels in the HC samples were more variable (Supplementary Table S7). The 
choices for top candidate markers in the PDAC group were made more difficult by the variable levels seen in 
individual PDAC EV samples (Supplementary Table S7). Potential markers chosen from this list include PTPRJ, 
MUC16, SDCBP and LAMA5.

Protein interaction analysis. Protein–protein interactions between the upregulated proteins identified 
in HC or PDAC organoid EVs were investigated using the STRING database for functional protein association 
networks (https:// string- db. org, version 11.0). For this purpose, additional candidate proteins with < 10% FDR 
were included. Figure 5A included the network mapping of 37 proteins upregulated in HC organoid EVs with 
the top 10 proteins (< 1% FDR) highlighted in a red circle. Gene ontology (GO) analysis matched 16 of 37 pro-
teins to functions ‘regulating biological quality’ (see Supplementary Table S8). Other top processes included ‘ion 
transport’ (9/37) and ‘regulation of response to stress’ (9/37). Thus, more abundant proteins found in HC EVs 
were involved in cell maintenance and response to environment.

Figure 5B shows the mapping of 31 protein candidates upregulated in PDAC organoid EVs with the top 10 
proteins circled in red. A cluster of proteins involved in the sorting and transport of vesicles through the exo-
some/MVB pathway was evident, with identification of 3 of the 4 proteins that comprise the ESCRT-I tetramer 
 complex53. Top 10 candidates also included proteins associated with tumor progression (LAMA5, SDCBP, TENA, 
PTPRJ, MUC16, TAOK1; see “Discussion”). Top matches in the GO analysis of PDAC EVs included ‘cellular com-
ponent organization’ (18/31), ‘localization’ (18/31), and ‘transport’ (16/31) (Supplementary Table S9). Processes 
specifically relevant to EVs included ‘vesicle-mediated transport’ (12/31) and ‘multivesicular body assembly’ 
(8/31). Thus, several abundant proteins found in PDAC EVs involved transport molecules, particularly those 
associated with the exosome/MVB transport process.

Extension of EV proteomic results to additional PDAC EV samples. Results from the top candi-
dates generated by the 4 × 4 study described above were retrospectively compared to proteomic results of EV 

Figure 2.  Isolation of EVs from organoids established from PDAC patients and healthy controls (HC). (A) 
Image of representative pancreatic organoid culture (PDAC). (B) Fractions obtained after size exclusion 
chromatography (SEC) of PDAC organoid supernatants were analyzed for  CD9+ EVs by flow cytometry 
and protein levels by measurement at 280 nm. (C) Representative EM images of EVs isolated after SEC on 
supernatants collected from two healthy control (HC-1 and HC-2) and two PDAC (PDAC-2 and PDAC-4) 
organoid cultures.

https://string-db.org
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Figure 3.  Statistical comparison of proteins identified in EVs isolated from healthy control (HC) and PDAC 
pancreatic organoids. (A) Multidimensional scaling (MDS) demonstrates clustering of samples by condition 
(HC versus PDAC) with PDAC-4 further removed from other PDAC samples. (B) Distribution of the candidate 
proteins with significant change (Up or Down) or without differential expression (non-DE) between the HC and 
PDAC sample sets are visualized by plotting fold change vs CPM.

Figure 4.  Proteomic analysis of EV samples isolated from four healthy control (HC) and four pancreatic 
cancer (PDAC) organoid cultures (4 × 4 study). (A) Fold change of spectral count averages for top 10 proteins 
upregulated in HC (top panel) and top 10 proteins upregulated in PDAC (bottom panel). (B) Spectral count 
averages in the HC or PDAC group for each corresponding protein identified in (A).
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samples generated from a larger panel of six PDAC organoid cultures that were processed in an identical manner. 
Supplemental Fig. S6 shows the fold change vs CPM distribution of up and down regulated proteins for these 
groups. As can be seen from spectral counts compared in Fig. 6, the detection of most candidate markers in this 
panel of six PDAC samples was more variable than results seen with the 4 × 4 study. Among the protein candi-
dates upregulated in the 4 × 4 HC EVs, only CLCA4 was minimally present in all six additional PDAC EV sam-
ples. Among the 4 × 4 PDAC upregulated proteins, only LAMA5 consistently showed increased levels in all six 
additional PDAC samples. SDCBP and TENA were upregulated in 5/6 and 4/6 of the additional PDAC samples, 
respectively. This is a reasonable finding given the large potential for variability among PDAC samples. Some 
common variables would include disease stage, tumor location and microenvironment, immune responsiveness 
and/or drug treatment prior to resection. Differences in proteomic results did not correlate with disease stage 
at the time of tumor collection in this study. However, the generation of a candidate marker list is a significant 
step forward in the identification of EV markers capable of differentiating between PDAC and healthy individu-
als. Several candidate proteins identified in this study from PDAC EVs have been reported in multiple types of 
cancer (see “Discussion”).

Discussion
A rapidly increasing number of EV studies are being published and are greatly expanding the diversity of roles 
assigned to these biological complexes. The production of EVs by most cells, once thought to be a mechanism 
for eliminating waste material, is now considered to be an important means for intercellular communication as 
well as local and long-distance delivery of bioactive molecules. EVs produced by malignant cells are very likely to 
bear unique profiles resulting from genetic mutation or deregulated protein levels. Such EVs also act to promote 
tumorigenesis by altering the microenvironment and suppressing local immune function. An in-depth analysis 
of cancer associated EVs therefore provides an opportunity both to understand the biology of cancer progres-
sion and to identify markers of disease. In the case of PDAC, a discovery of early disease changes in selected EV 
markers could substantially decrease the rate of mortality.

The detection and analysis of isolated EVs is challenging on multiple levels. EVs released into tissue or the 
microenvironment may be short-lived while EVs present in complex biofluids are difficult to isolate in sufficient 
amounts without non-specific contaminants. In this current study we detected EVs in PDAC patient plasma and 
in supernatants from PDAC and HC pancreatic organoid cultures using high resolution flow cytometry. Flow 
cytometry detection of tetraspanins was advantageous for detection purposes but cannot be used to determine 
cell type or tissue source of EVs in most biological fluids. Identification of cell-type-specific EV markers for use 
in multiparameter screening of EVs would greatly improve detection as a diagnostic tool.

Figure 5.  Protein interaction analysis. The STRING database (https:// string- db. org) was used to analyze 
protein–protein interactions among the candidates found to be upregulated in pancreatic organoid EVs from 
(A) healthy controls or (B) PDAC patients. Nodes highlighted with a red ring designate proteins within the top 
ten highest fold change in each group (p < 0.01, see Fig. 4).

https://string-db.org
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The isolation of EVs produced in cell culture is an alternative strategy that circumvents many of the complexi-
ties associated with the analysis of EVs in plasma samples. EVs from pancreatic cell lines grown in 2D culture 
have been analyzed for protein  biomarkers54,55, with little overlap to our study except for the upregulation of 
 LAMA555. 3D organoid cultures provide the added advantage of recapitulating complex cellular interactions 
and self-renewal capacity. A recent study investigated the miRNA cargo of EVs derived from PDAC  organoids56; 
potential biomarkers were also reported in a study of organoids derived from PDAC  xenografts57 but were not 
found to overlap with markers identified in our study. After adjustment of isolation procedures in our study, EVs 
suitable for mass spectrometry were isolated from PDAC and healthy pancreatic organoid cultures. In total, we 
carried out proteomic analysis on EVs isolated from 10 PDAC organoid cultures and 4 healthy control pancreatic 
organoid cultures. These samples were from a defined tissue source with minimal contamination from human 
serum proteins or lipoproteins. PDAC organoids were established from resected tumor tissue at various stages of 
disease, which may have contributed to variable marker levels seen in the results. In our 4 × 4 study, we identified 
proteins upregulated in either HC EVs or PDAC EVs. Proteins upregulated in HC EVs play significant roles in 
maintaining cellular homeostasis. Additionally, some are reportedly tumor suppressive:  (DUOX258,  MUC3A59,60, 
 CLCA461–63,  CDHR264,65. In contrast, proteins upregulated in PDAC EVs were associated with tumor progression 
or were part of the exosome/MVB sorting and release machinery. The latter indicates that increased output of EVs 
specifically associated with the exosome/MVB pathway occurs in PDAC tumor cells and that some components 
may remain within EVs. Alternatively, it is possible that these proteins play some role in uptake or delivery at the 
target site, although no such role for ESCRT-I proteins or VSP4A/B has been reported. It is interesting that only 
proteins in the ESCRT-I complex (MB12A, VPS28, VP37B) and the ATPase release protein (VPS4A, VPS4B), 
but not the ESCRT-II or -III components, were identified. It is possible that select components of this pathway 
remain associated with exosomes as they are overexpressed in PDAC cells.

Of the top upregulated proteins identified in PDAC EVs, three proteins are notable for their reported role in 
cancer progression. (1) Laminin subunit alpha 5 (LAMA5), an extracellular matrix glycoprotein, was consist-
ently elevated in all PDAC organoid EV samples analyzed here. In colorectal cancer, LAMA5 promoted branch-
ing angiogenesis and liver metastasis. Additional studies found that LAMA5 played a role in the interaction 

Figure 6.  Upregulated proteins analyzed in additional PDAC organoid EVs. Comparison of average 
spectral counts of top proteins identified in the 4 × 4 study (see Fig. 4) to normalized spectral counts for each 
corresponding protein in six additional PDAC organoid EV samples. PDAC stage is shown for each PDAC 
organoid (met metastatic tumor sample).
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of colorectal tumor cells with endothelium and that LAMA5 knockdown in colorectal cancer cells affected 
differentiation and sensitivity to drug  treatment66–69. Interestingly, using mass spectrometry we also identified 
LAMA5 to be a highly elevated protein in EVs isolated from a mouse pancreatic tumor line (ACB, unpublished) 
that is used extensively as an orthotopic murine model of  PDAC70. (2) Syntenin1 (SDCBP), also known as mela-
noma differentiation-associated protein-9 (MDA-9), is an adapter molecule that regulates multiple membrane-
associated processes, including exosome biogenesis, by binding various partner molecules. SDCBP also regulates 
cell membrane motility and promoted tumor growth and metastasis in melanoma, prostate, breast and gastric 
cancer  cells71,72. In a recent paper, Kugeratski et al.51 identified syntenin-1 as the most consistently abundant 
protein in exosomes isolated from 14 cell lines, and the use of syntenin-1 as a universal marker for exosomes 
was proposed. With regard to our own current study, the upregulated expression of syntenin-1 in PDAC EVs is 
consistent with a shift to increased exosome biogenesis during cancer progression. (3) Tenascin (TENA), also 
known as glioma-associated extracellular matrix antigen, is an extracellular matrix glycoprotein that regulates 
cell adhesion and movement in development and injury repair. TENA promotes angiogenesis and is associated 
with poor prognosis in several cancer types; downregulation of TENA also inhibited breast cancer growth and 
 migration73–75. Additionally, TENA plays a role in neurite outgrowth and guidance, and was found to promote 
concomitant outgrowth between PDAC and neuronal cells in co-culture76. This is of particular interest in PDAC, 
where perineural invasion is common. Finally, other proteins identified in our 4 × 4 proteomic comparison of 
PDAC vs HC organoid EVs with more variability in the larger PDAC panel (PTPRJ, MUC16, TAOK1) are also 
reported markers of tumor-development in several cancer  models77–79.

The variable level of these protein markers also likely reflects the source heterogeneity in our PDAC organoid 
samples. Intrinsic factors of the pancreatic cancer and tumor microenvironment may contribute to this vari-
ability, as well as disease stage and treatment. Subset analysis of numerous additional samples will be required 
to address the issue of variability. In addition, candidate proteins for PDAC screening will need to be validated 
by independent study.

In conclusion, the results from this study are highly encouraging in terms of the potential markers identi-
fied from the EV populations of both PDAC and HC organoids. The EV protein profiles from PDAC versus HC 
organoids were distinct and associated with different cellular programs consistent with a tumorigenic or healthy 
state. Through careful selection of screening markers using pancreatic organoids, one may design a panel to detect 
pancreatic EVs in plasma that display a malignant or healthy profile to indicate the presence of ongoing disease.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.
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